» » »

17. Декартовы прямоугольные координаты точки, вектора. Разложение вектора по базису. Направляющие косинусы вектора.

 Система координат и координаты вектора

Рассмотрим случай трехмерного пространства (на плоскости все построения аналогичны). Фиксируем некоторую точку $ и возьмем произвольную точку $ . Радиус-векторомточки $ по отношению к точке $ называется вектор $ .

Если в пространстве выбран базис, то вектор $ раскладывается по этому базису. Таким образом точке $ можно сопоставить упорядоченную тройку чисел -- координаты ее радиус-вектора.

        Определение 10.17   Декартовой системой координат в пространстве называется совокупность точки и базиса.         

Точка $ носит название начала координат; прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат. Первая -- осью абсцисс, вторая -- осью ординат, третья -- осью аппликат. Плоскости, проходящие через оси координат, называют координатными плоскостями.

        Определение 10.18   Координаты радиус-вектора точки $ по отношению к началу координат называются координатами точки $ в рассматриваемой системе координат.         

Первая координата называется абсциссой, вторая -- ординатой, третья -- аппликатой.

Аналогично определяются декартовы координаты на плоскости. Разумеется, точка на плоскости имеет только две координаты -- абсциссу и ординату.

Координаты точки обычно пишут в скобках после буквы, обозначающей точку, например $ , $ .

        Определение 10.19   Декартова система координат называется прямоугольной, если векторы базиса -- единичные и попарно ортогональные (перпендикулярные) друг другу.         

В дальнейшем мы будем использовать лишь декартову прямоугольную систему координат и для краткости будем называть ее просто система координат.

Единичные попарно ортогональные векторы базиса принято, как правило, обозначать i, j, k.

        Определение 10.20   Базис, образованный единичными попарно ортогональными векторами, называют ортонормированным.         

На рис. 10.15 показаны два способа изображения точки $ по ее координатам.




Рис.10.15.Построение точки


Так как точку пространства мы вынуждены изображать на плоскости, то, пока не указаны линии, связывающие изображение точки с осями координат, установить ее положение в пространстве невозможно! Это показывает рис. 10.16.




Рис.10.16.


Зная координаты начала и координаты конца вектора, можно определить координаты самого вектора.

        Предложение 10.12   Если точки заданы своими координатами $ , $ , то $ .

        Доказательство.     Очевидно соотношение $ (рис. 10.17),




Рис.10.17.Координаты вектора


откуда $ . Так как, по определению, координаты точки совпадают с координатами ее радиус-вектора, то $ , $ . В силу  предложений 10.410.5 получим $ .      

 Предложение 10.12 можно сформулировать так: чтобы найти координаты вектора, нужно из координат его конца вычесть координаты его начала.

п.2. Разложение вектора по базису.

Определение. Пусть  – произвольный вектор,  – произвольная система векторов. Если выполняется равенство

                   ,                       (1)

то говорят, что вектор  представлен в виде линейной комбинации данной системы векторов. Если данная система векторов  является базисом векторного пространства, то равенство (1) называется разложением вектора  по базису . Коэффициенты линейной комбинации  называются в этом случае координатами вектора  относительно базиса .

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

   Доказательство. 1) Пусть L произвольная прямая (или ось) и базис . Возьмем произвольный вектор . Так как оба вектора  и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что  и тем самым мы получили разложение вектора  по базису  векторного пространства .

   Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора  по базису  векторного пространства :

 и , где . Тогда  и используя закон дистрибутивности, получаем:

                      .

Так как , то из последнего равенства следует, что , ч.т.д.

2) Пусть теперь Р произвольная плоскость и  – базис . Пусть  произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведемпрямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора  проведем прямую параллельную вектору  и  прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , ,  – базис ,  – базис .

   Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что

  и . Отсюда получаем:

 и возможность разложения по базису доказана.

                                         рис.3.

   Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора  по базису  векторного пространства :  и . Получаем равенство

, откуда следует . Если , то , а т.к. , то  и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарностидвух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно,  и , ч.т.д.

3) Пусть  базис  и пусть  произвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора  и вектор  от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость  и плоскость ; далее через конец вектора  проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

                             рис.4.

По правилу сложения векторов получаем равенство:

                        .                                    (1)

По построению . Отсюда, по теореме о коллинеарности двухвекторов, следует, что существует число , такое что . Аналогично,  и , где . Теперь, подставляя эти равенства в (1), получаем:

                                             (2)

 и возможность разложения по базису доказана.

   Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора  по базису :

 и . Тогда

       .       (3)

   Заметим, что по условию векторы   некомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая:  или .

а) Пусть , тогда из равенства (3) следует:

           .                        (4)

Из равенства (4) следует, что вектор  раскладывается по базису , т.е. вектор  лежит в плоскости векторов  и, следовательно, векторы  компланарные, что противоречит условию.

б) Остается случай , т.е. .  Тогда из равенства (3) получаем  или

             .                           (5)

Так как  базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что  и , ч.т.д.

Теорема доказана.

5. Углы, образуемые вектором  с координатными осями Ox, Oy и Oz, определяются из формул (3) и (4):

           


Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Поделиться

Оплаченная реклама

Дисциплины