» » »

8.3.2 Интеграл Фурье

Разложение в ряд Фурье четных и нечетных функций Пусть период функции f (x) равен 2π. В этом случае достаточно рассмотреть поведение функции в интервале [−π, π]. 
  1. Предположим, что функция f (x) с периодом 2π абсолютно интегрируема в интервале [−π, π]. При этом является конечным так называемый интеграл Дирихле:
  2. Предположим также, что функция f (x) является однозначной, кусочно-непрерывной (то есть имеет конечное число точек разрыва) и кусочно-монотонной (имеет конечное число максимумов и минимумов).
Если условия 1 и 2 выполнены, то ряд Фурье для функции f (x) существует и сходится к данной функции

Если x0 − точка разрыва, то ряд Фурье сходится к значению
Ряд Фурье функции f (x) представляется в виде
где коэффициенты Фурье a0, an и bn определяются формулами
Разложение в ряд Фурье четной функции f (x) с периодом 2π не содержит синусов и имеет вид
где коэффициенты Фурье определяются выражениями
Аналогично, разложение в ряд Фурье нечетной функции f (x), имеющей период 2π содержит только синусы и имеет вид
где b0 и bn равны

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Поделиться

Оплаченная реклама

Дисциплины