Синусоидальные ЭДС, напряжения и токи можно изображать графически в виде соответствующих синусоид, такие графики в электротехнике называют волновыми диаграммами (см. рис. 13).
Обычно на одной волновой диаграмме изображают несколько синусоид переменных величин (напряжений, токов), относящихся к одной и той же цепи. Для оценки их взаимного расположения вдоль оси абсцисс вводится разность их начальных фаз, называемая фазовым сдвигом. Чаще всего встречается фазовый сдвиг между током и напряжением.
Волновые диаграммы не всегда удобны для исследования, особенно при сложных разветвленных цепях. Проще в этом случае изображать синусоидальные величины вращающимися векторами. Изобразим вращающийся вектор, соответствующий току:
Любой вектор на плоскости, проведенный из начала координат и изображающий значение ЭДС, напряжения или тока, однозначно определяется точкой, соответствующей концу этого вектора (точка на рисунке).
Комплексное число (соответствующее точке ) имеет вещественную (ОС) и мнимую (ОВ) составляющие на комплексной плоскости.
Представленная форма записи называется алгебраической формой комплексного числа.
Перевод комплексных чисел из одной формы в другую можно производить по следующим формулам:
При сложении и вычитании комплексных чисел удобно пользоваться алгебраической формой записи:
При умножении, делении, возведении в степень удобно пользоваться показательной формой
Если комплексное число , то комплексное число называется сопряженным комплексным числом.
Синусоидальное ЭДС можно представить комплексным числом:
Для напряжения и тока аналогично.
При расчетах цепей синусоидального тока целесообразно перейти от гармонических функций времени к их изображениям в комплексной форме и производить все расчеты, используя комплексные числа. Конечный результат может быть представлен снова в виде синусоидальной функции времени.