Главная
»
Самолетостроение
»
Физика (3 семестр)
»
Дифракционная решетка. Условия главных максимумов. Решетка как спектральный прибор.
Дифракционная решетка. Условия главных максимумов. Решетка как спектральный прибор.
Дифракционная решетка – система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.
Дифракционная решетка разлагает падающий свет непосредственно по длинам волн , поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны.
Суммарная дифракционная картина – результат интерференционных волн, идущих от всех щелей – в дифракционной решетке осуществляется многолучевая интерференция когерентных пучков света, идущих от всех щелей. Если ширина каждой щели – a, ширина непрозрачных участков – b, то d=a+b называется постоянной (периодом) дифракционной решетки.
Разности хода лучей от двух соседних щелей будут одинаковы в пределах всей дифракционной решетки: Δ = d*sinφ
Условие главных максимумов: d*sinφ = ±mλ (m=1,2,3…)
Условие главных минимумов: a*sinφ = ±mλ (m=1,2,3…)
Между двумя главными максимумами располагается N-1 дополнительных минимумов, разделенных вторичными максимумами, создающими слабый фон. Условие дополнительных минимумов: d*sinφ = ±m’ λ/N, где m’ может принимать все целочисленные значения кроме 0, N, 2N,…при которых данное условие переходит в условие главных максимумов. Амплитуда главного максимума есть сумма амплитуд колебаний от каждой щели Amax = N*A1. Поэтому интенсивность главного максимума в N^2 раз больше интенсивности I1, создаваемой одной щелью в направлении главного максимума: Imax = N^2 * I1. Положение главных максимумов зависит от длины волны λ, поэтому при пропускании через решетку белого света все максимумы, роме центрального разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная – наружу. Поэтому дифракционная решетка может быть использована как спектральный прибор, для разложения света в спектр и измерения длин волн. Число главных максимумов: m≤d / λ.
Решетка как спектральный прибор
Положение главных максимумов зависит от длины волны l (см. (180.3)). Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т=0), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная — наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор.
дифракция на пространственных (трехмерных) решетках — пространственных образованиях, в которых элементы структуры подобны по форме, имеют геометрически правильное и периодически повторяющееся расположение, а также постоянные (периоды) решеток, соизмеримые с длиной волны электромагнитного излучения.
Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. Кристаллы, являясь трехмерными пространственными решетками, имеют постоянную порядка 10–10 м и, следовательно, непригодны для наблюдения дифракции в видимом свете (l » 5×10–7 м).
Представим кристаллы в виде совокупности параллельных кристаллографических плоскостей (рис. 264), отстоящих друг от друга на расстоянии d. Пучок параллельных монохроматических рентгеновских лучей (1, 2) падает под углом скольжения q (угол между направлением падающих лучей и кристаллографической плоскостью) и возбуждает атомы кристаллической решетки, которые становятся источниками когерентных вторичных волн 1' и 2', интерферирующих между собой, подобно вторичным волнам, от щелей дифракционной решетки. Максимумы интенсивности (дифракционные максимумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов
т. е. при разности хода между двумя лучами, отраженными от соседних кристаллографических плоскостей, кратной целому числу длин волн А, наблюдается дифракционный максимум.
Формула Вульфа — Брэггов используется при решении двух важных задач:
1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя q и т, можно найти межплоскостное расстояние (d), т.е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа. Формула Вульфа — Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией.
2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя q и т, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спектроскопии.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.