» » »

18. Дискретность энергетического спектра атома. Опыт Франка и Герца. Излучение и поглощение света в рамках Боровской модели. Происхождение спектральных серий атома водорода.

18. Дискретность энергетического спектра атома. Опыт Франка и Герца. Излучение и поглощение света в рамках Боровской модели. Происхождение спектральных серий атома водорода.

Опыт Франка и Герца.

Изучая методом задерживающего потенциала столкновения электронов с атомами газов (1913), Д. Франк и Г. Герц экспериментально доказали дискретность значений энергии атомов. Принципиальная схема их установки приведена на рис. 292. Вакуумная трубка, заполненная парами ртути (давление приблизительно равно 13 Па), содержала катод (К), две сетки (C1 и С2) и анод (А). Электроны, эмиттируемые катодом, ускорялись разностью потенциалов, приложенной между катодом и сеткой C1. Между сеткой С2 и анодом приложен небольшой (примерно 0,5 В) задерживающий потенциал.

 

Электроны, ускоренные в области 1, попадают в область 2 между сетками, где испытывают соударения с атомами паров ртути. Электроны, которые после соударе­ний имеют достаточную энергию для преодоления задерживающего потенциала в об­ласти 3, достигают анода. При неупругих соударениях электронов с атомами ртути последние могут возбуждаться. Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя при этом в одно из возбужденных состояний. Поэтому если в атомах действительно существуют стационарные состояния, то электроны, сталкиваясь с атомами ртути, должны терять энергию дискретно, определенными порциями, равными разности энергий соответству­ющих стационарных состояний атома.

Из опыта следует (рис. 293), что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно, его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблю­даются при 2×4,86 и 3×4,86 В.

Ближайшим к основному, невозбужденному, состоянию атома ртути является возбужденное состояние, отстоящее от основного по шкале энергий на 4,86 эВ. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При еj = 4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию, возбуждая переход одного из электронов атома из нормального энергетического состояния на возбужденный энергетический уровень. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящего поля и достигнуть анода. Этим и объясняется первое резкое падание анодного тока при еj = 4,86 эВ. При значениях энергии, кратных 4,86 эВ, электроны могут испытать с атомами ртути 2, 3, ... неуп­ругих соударения, потеряв при этом полностью свою энергию, и не достигнуть анода, т. е. должно наблюдаться резкое падение анодного тока. Это действительно наблюда­ется на опыте .

Таким образом, опыты Франка и Герца показали, что электроны при столкновении с атомами ртути передают атомам только определенные порции энергии, причем 4,86 эВ — наименьшая возможная порция энергии (наименьший квант энергии), кото­рая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестя­ще выдержала экспериментальную проверку.

Атомы ртути, получившие при соударении с электронами энергию DE, переходят в возбужденное состояние и должны возвратиться в основное, излучая при этом, согласно второму постулату Бора (см. (210.2)), световой квант с частотой n = DE/h. По известному значению DE = 4,86 эВ можно вычислить длину волны излучения: l = hc/DE » 255 нм. Таким образом, если теория верна, то атомы ртути, бомбардиру­емые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетово­го излучения с l » 255 нм. Опыт действительно обнаруживает одну ультрафиолетовую линию с l » 254 нм. Таким образом, опыты Франка и Герца экспериментально подтвердили не только первый, но и второй постулат Бора. Эти опыты сыграли огромное значение в развитии атомной физики.

 

Спектр атома водорода по Бору

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем — систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Следуя Бору, рассмотрим движение электрона в водородоподобной системе, огра­ничиваясь круговыми стационарными орбитами. Решая совместно уравнение (208.1) , предложенное Резерфордом, и уравнение (210.1), получим выраже­ние для радиуса n-й стационарной орбиты:

                                                                      (212.1)

где n = 1, 2, 3, ... . Из выражения (212.1) следует, что радиусы орбит растут пропорци­онально квадратам целых чисел.

Для атома водорода (Z = 1) радиус первой орбиты электрона при n = 1, называемый первым боровоским радиусом (а), равен

                              (212.2)

что соответствует расчетам на основании кинетической теории газов. Так как радиусы стационарных орбит измерить невозможно, то для проверки теории необходимо обратиться к таким величинам, которые могут быть измерены экспериментально. Такой величиной является энергия, излучаемая и поглощаемая атомами водорода.

Полная энергия электрона в водородоподобной системе складывается из его кине­тической энергии (тev2/2) и потенциальной энергии в электростатическом поле ядра (–Ze2/(4pe0r)):

(учли, что ; см. (208.1)). Учитывая квантованные для радиуса n-й стационарной орбиты значения (212.1), получим, что энергия электрона может прини­мать только следующие дозволенные дискретные значения:

                                      (212.3)

где знак минус означает, что электрон находится в связанном состоянии.

Из формулы (212.3) следует, что энергетические состояния атома образуют после­довательность энергетических уровней, изменяющихся в зависимости от значения n. Целое число n в выражении (212.3), определяющее энергетические уровни атома, называется главным квантовым числом. Энергетическое состояние с n=1 является основным (нормальным) состоянием; состояния с n > 1 являются возбужденными. Энер­гетический уровень, соответствующий основному состоянию атома, называется основ­ным (нормальным) уровнем; все остальные уровни являются возбужденными.

Придавая n различные целочисленные значения, получим для атома водорода (Z = 1), согласно формуле (212.3), возможные уровни энергии, схематически представ­ленные на рис. 294. Энергия атома водорода с увеличением n возрастает и энергетичес­кие уровни сближаются к границе, соответствующей значению n = ¥. Атом водорода обладает, таким образом, минимальной энергией (E1 = –13,55 эВ) при n = 1 и мак­симальной (Е¥ = 0) при n = ¥. Следовательно, значение Е¥ = 0 соответствует ионизации атома (отрыву от него электрона). Согласно второму постулату Бора (см. (210.2)), при переходе атома водорода (Z= 1) из стационарного состояния л в стационарное состоя­ние т с меньшей энергией испускается квант

откуда частота излучения

                                             (212.4)

где R = mee4/(8h3).

Воспользовавшись при вычислении R современными значениями универсальных постоянных, получим величину, совпадающую с экспериментальным значением посто­янной Ридберга в эмпирических формулах для атома водорода (см. § 209). Это совпадение убедительно доказывает правильность полученной Бором формулы (212.3) для энергетических уровней водородоподобной системы.

Подставляя, например, в формулу (212.4) т=1 и п=2, 3, 4, ..., получим группу линий, образующих серию Лаймана (см. § 209) и соответствующих переходам электро­нов с возбужденных уровней (n = 2, 3, 4, ...) на основной (m = l). Аналогично, при подстановке m = 2, 3, 4, 5, 6 и соответствующих им значений n получим серии Бальмера, Пашена, Брэкета, Пфунда и Хэмфри (часть из них схематически представлена на рис. 294), описанные в § 209. Следовательно, по теории Бора, количественно объяснив­шей спектр атома водорода, спектральные серии соответствуют излучению, возника­ющему в результате перехода атома в данное состояние из возбужденных состояний, расположенных выше данного.

Спектр поглощения атома водорода является линейчатым, но содержит при нормальных условиях только серию Лаймана. Он также объясняется теорией Бора. Так как свободные атомы водорода обычно находятся в основном состоянии (стационарное состояние с наименьшей энергией при n = 1), то при сообщении атомам извне опреде­ленной энергии могут наблюдаться лишь переходы атомов из основного состояния в возбужденные (возникает серия Лаймана).

Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями (с одной стороны, применяет законы классической физики, а с дру­гой — основывается на квантовых постулатах). В теории Бора рассмотрены спектры атома водорода и водородоподобных систем и вычислены частоты спектральных линий, однако эта теория не смогла объяснить интенсивности спектральных линий и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недо­статком теории Бора была невозможность описания с ее помощью спектра атома гелия — одного из простейших атомов, непосредственно следующего за атомом водо­рода

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.