Главная
»
Самолетостроение
»
Физика (3 семестр)
»
Газ в поле тяжести. Барометрическая формула. Распределение Больцмана по энергиям.
Газ в поле тяжести. Барометрическая формула. Распределение Больцмана по энергиям.
Рассмотрим столб газа сечением S, находящийся при постоянной температуре в поле силы тяжести. Выделим слой газа толщиной dz на высоте z и вычислим давление газа на его основания. Давление слоя газа на верхнее и нижнее основания слоя разное — оно различается в результате действия силы тяжести. Очевидно, разность давлений равна весу газа, заключенного в слое, отнесенному к единице площади основания столба.
Пусть разность давлений есть dP. Давление газа с ростом высоты уменьшается, поэтому dP равно весу слоя со знаком минус. Вес газа в объеме слоя dV = dz·S равен ρ·g·dV, где ρ — плотность газа, g — ускорение силы тяжести. Таким образом,
dP = ‑ρ·g·dV/S = ‑ρ·g·dz.
Выразим отношение N/V с помощью уравнения состояния (2.7), после чего находим Интегрируя это соотношение, получим P0 — константа, определяемая пределами интегрирования. Окончательно имеем:
Здесь P0 — давление при z = 0. т. е. у основания столба. Аналогично с высотой изменяется и плотность частиц 2.10)Давление и плотность газа распределены по объему газа неоднородно, они принимают максимальные значения у основания столба и убывают с высотой.
Величина, входящая в показатель экспоненты в формулах (2.9) и (2.10), есть потенциальная энергия частицы в поле тяжести U = mgz-Таким образом, распределение молекул в произвольном потенциальном внешнем поле, в котором частицы обладают потенциальной энергией U(r), может быть описано формулой
Эта формула называется распределением Больцмана. Здесь n0 — плотность частиц в точках пространства, для которых потенциальная энергия принята равной нулю.
Согласно распределению Больцмана число частиц, обладающих определенными значениями потенциальной энергии определяется отношением величины потенциальной энергии U к тепловой энергии частицы kБT. Чем больше энергия теплового движения, тем более разупорядочена система частиц, значит, тем более однородно распределены частицы в пространстве. В самом деле, если kБT >> U, и из формулы (2.11) следует, что n = n0 при любом значении U. В случае kБT << U распределение частиц максимально упорядочено: плотность частиц максимальная состоянии с минимальной потенциальной энергией Umin, в то время как плотность частиц в других состояниях равна нулю.
Барометрическая формула
Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид
p — давление газа в слое, расположенном на высоте h, p0 — давление на нулевом уровне (h = h0), M — молярная масса газа, R — газовая постоянная, T — абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:
где m — масса молекулы газа, k — постоянная Больцмана.
Распределение Больцмана по энергиям Это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц ni с полной энергией Ei равно:ni =A•ωi •eEi /Kt (1)
где ωi - статистический вес (число возможных состояний частицы с энергией ei). Постоянная А находится из условия, что сумма ni по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки): В случае, когда движение частиц подчиняется классической механике, энергию Ei можно считать состоящей из кинетической энергии Eiкин частицы (молекулы или атома), её внутренней энергии Eiвн (напр., энергии возбуждения электронов) и потенциальной энергии Ei,пот во внешнем поле, зависящей от положения частицы в пространстве:
Ei = Ei, кин + E i, вн + Ei, пот (2)
Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения
Ei,вн и влиянием внешних полей Ei,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.
В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. Ei, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.
В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:
n2/n1 = (ω2/ω1)•e-(E2-E1)/kT (3) (ф-ла Больцмана).
Разность энергий E2-E1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2•10-9.
Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.