» » »

20. Несовместимость одновременного определения координат и импульса частицы. Соотношение неопределенностей Гейзенберга. Границы применимости классической механики.

20. Несовместимость одновременного определения координат и импульса частицы. Соотношение неопределенностей Гейзенберга. Границы применимости классической механики.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описа­ния микрочастиц используются то волновые, то корпускулярные представления. По­этому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Микроча­стицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движе­нии микрочастицы по определенной траектории и неправомерно говорить об одновре­менных точных значениях ее координаты и импульса. Это следует из корпускулярно-волнового дуализма. Так, понятие «длина волны в данной точке» лишено физичес­кого смысла, а поскольку импульс выражается через длину волны (см. (213.1)), то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.

В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью харак­теризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенберга, микрочастица (микрообъект) не может иметь одновременно и определен­ную координату (х, у, z), и определенную соответствующую проекцию импульса (рх, pу, pz), причем неопределенности этих величин удовлетворяют условиям

                                              (215.1)

т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.

Из соотношения неопределенностей (215.1) следует, что, например, если микроча­стица находится в состоянии с точным значением координаты (Dx = 0), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопреде­ленной (Dpx ® ¥), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта.

Поясним, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Пусть поток электронов проходит через узкую щель шириной Dх, расположенную перпендикулярно направлению их движения (рис. 295). Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля l электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране (Э), характеризуется главным максимумом, расположенным симметрично оси Y, и побочными максимумами по обе стороны от главного (их не рассматриваем, так как основная доля интенсив­ности приходится на главный максимум).

До прохождения через щель электроны двигались вдоль оси Y, поэтому составляющая импульса рх=0, так что Dpx=0, а координата х частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси Х определяется с точностью до ширины щели, т. е. с точностью Dх. В этот же момент вследствие дифракции электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2j (j — угол, соответствующий первому дифракционному минимуму). Следовательно, появляется неопределенность в значении составляющей импульса вдоль оси X, которая, как следует из рис. 295 и формулы (213.1), равна

                                                    (215.2)

Для простоты ограничимся рассмотрением только тех электронов, которые попадают на экран в пределах главного максимума. Из теории дифракции (см. § 179) известно, что первый минимум соответствует углу j, удовлетворяющему условию

                                                                 (215.3)

где Dх — ширина щели, а l — длина волны де Бройля. Из формул (215.2) и (215.3) получим

где учтено, что для некоторой, хотя и незначительной, части электронов, попадающих за пределы главного максимума, величина Dрx ³ рsin j. Следовательно, получаем выражение

т. е. соотношение неопределенностей (215.1).

Невозможность одновременно точно определить координату и соответствующую проекцию импульса не связана с несовершенством методов измерения или измеритель­ных приборов, а является следствием специфики микрообъектов, отражающей особен­ности их объективных свойств, а именно двойственной корпускулярно-волновой приро­ды. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей, отражая специфику физики микрочастиц, позво­ляет оценить, например, в какой мере можно применять понятия классической меха­ники к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (215.1) в виде

                                                                       (215.4)

Из этого выражения следует, что чем больше масса частицы, тем меньше неопределен­ности ее координаты и скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой 10–12 кг и линейными размерами 10–6 м, координата которой определена с точ­ностью до 0,01 ее размеров (Dх = 10–8 м), неопределенность скорости, по (215.4), Dvx = 6,62×10–34/(10–8×10–12) м/с = 6,62×10–14 м/с, т. е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться. Таким образом, для макроскопичес­ких тел их волновые свойства не играют никакой роли; координата и скорость макротел могут быть одновременно измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Предположим, пучок электронов движется вдоль оси х со скоростью v=108 м/с, определяемой с точностью до 0,01% (Dvx»104 м/с). Какова точность определения координаты электрона? По формуле (215.4),

т. е. положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории, иными словами, описывать их движение законами классической механики.

Применим соотношение неопределенностей к электрону, движущемуся в атоме водорода. Допустим, что неопределенность координаты электрона Dx»10–10 м (по­рядка размеров самого атома, т. е. можно считать, что электрон принадлежит дан­ному атому). Тогда, согласно (215.4), Dvx=6,62×10–34/(9,11×10–31 ×10–10) = 7,27×106 м/с. Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса »0,5×10–10 м его скорость v » 2,3×106 м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электрона в атоме по определенной траектории, иными словами, для описания движе­ния электрона в атоме нельзя пользоваться законами классической физики.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t, т. е. неопределенности этих величии удовлетворяют условию

                                                      (215.5)

Подчеркнем, что DЕ неопределенность энергии некоторого состояния системы, Dt — промежуток времени, в течение которого оно существует. Следовательно, систе­ма, имеющая среднее время жизни Dt, не может быть охарактеризована определенным значением энергии; разброс энергии DE=h/Dt возрастает с уменьшением среднего времени жизни. Из выражения (215.5) следует, что частота излученного фотона также должна иметь неопределенность Dn = DE/h, т. е. линии спектра должны характеризо­ваться частотой, равной n ± DE/h..Опыт действительно показывает, что все спектраль­ные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.