» » »

1) Кинематика материальной точки.

Кинематика материальной точки

[править

Кинема́тика точки  — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:

  • Тело отсчета;
  • Систему измерения положения тела в пространстве (систему координат);
  • Прибор для измерения времени (Часы).

Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела.

[править]Кинематика поступательного движения

[править]Основные кинематические понятия

Материальная точка  — тело, размерами которого по сравнению с характерными расстояниями данной задачи можно пренебречь. Так Землю можно считать Материальной Точкой (М. Т.) при изучении её движения вокруг Солнца, пулю можно считать М. Т. при её движении в поле тяжести Земли, но нельзя считать таковой при учете её вращательного движения в стволе винтовки. При поступательном движении в ряде случаев при помощи понятия М. Т. можно описывать и изменение положения более крупных объектов. Так, например, тепловоз, проходящий расстояние 1 метр, может считаться М. Т., поскольку его ориентация относительно системы координат в процессе движения является фиксированной и не влияет на постановку и ход решения задачи.

Радиус-вектор — Вектор, определяющий положение М. Т. в пространстве: \vec. Здесь r1,r2,...,rn — координаты радиус-вектора. Геометрически изображается вектором, проведенным из начала координат к материальной точке. Зависимость радиус-вектора (или его координат ri = ri(t)) от времени \vec называетсязаконом движения.

Траектория — Годограф радиус-вектора, то есть — воображаемая линия, описываемая концом радиус-вектора в процессе движения. Иными словами, траектория — это линия вдоль которой движется М. Т. При этом закон движения выступает как уравнение, задающее траекторию параметрически. Длину участка траектории между начальным и конечным моментами времени часто называют пройденным расстоянием, длиной пути или вульгарно — путем и обозначают буквой S. При таком описании движения Sвыступает в качестве обобщенной координаты, а законы движения в этом случае записывается в виде S = S(t) и аналогичны соответствующим законам для координат. Например закон равноускоренного криволинейного движения может быть записан в виде:

S=S_0+v_{S_0},

Где : v_{S_0} — модуль начальной скорости, а aS = aτ — Тангенциальное ускорение.

Описание движения при помощи понятия траектории — один из ключевых моментов классической механики . В квантовой механике движения носит бестраекторный характер, а само понятие траектории теряет смысл.

[править]Основные кинематические величины

src=http://upload.wikimedia.org/wikipedia/ru/thumb/c/ca/Radius-vector.png/300px-Radius-vector.png
style=border-style:
Радиус-вектора и вектор перемещения (черные стрелки). Вектора средней и мгновенных скоростей (Зеленые стрелки). Траектория (красная линия)
src=http://upload.wikimedia.org/wikipedia/ru/thumb/a/ac/Acceleration_1.png/300px-Acceleration_1.png
style=border-style:
Разложение ускорения по сопутствующему базису

Перемещение — векторная физическая величина, равная разности радиус-векторов в конечный и начальный моменты времени:

\Delta.

Иными словами, перемещение — это приращение радиус-вектора за выбранный промежуток времени.


Средняя скорость — векторная физическая величина равная отношению вектора перемещения к промежутку времени, за который происходит это перемещение:

\vec.


Мгновенная скорость — векторная физическая величина, равная первой производной от радиус-вектора по времени:

\vec.

Характеризует быстроту перемещения материальной точки. Мгновенную скорость можно определить как предел средней скорости при устремлении к нулю промежутка времени, на котором она вычисляется:

\vec.


Единица измерения скорости в системе СИ м/с, в системе СГС — см/с. Мгновенная скорость всегда направлена по касательной к траектории.

Мгновенное ускорение — векторная физическая величина, равная второй производной от радиус-вектора по времени и, соответственно, первой производной от мгновенной скорости по времени:

\vec.

Характеризует быстроту изменения скорости. Единица ускорения в системе СИ— м/с², в системе СГС — см/с². В случае движения в плоскости вектор ускорения можно разложить по сопутствующему базису: на вектор нормального и тангенциального ускорения:

\vec.

Здесь \vec{n} — единичный вектор нормали, \vec{\tau} — единичный вектор касательной. Величина an называется нормальным ускорением и характеризует скорость изменения направления движения. Нормальное ускорение выражается через мгновенную скорость и радиус кривизны траектории:

a_n.

В случае движения по окружности нормальное ускорение называется центростремительным. Как видно из предыдущей формулы, при движении по окружности с постоянной скоростью нормальное ускорение постоянно по модулю и направлено к центру окружности.

Величина aτ называется тангенциальным ускорением и характеризует величину изменения модуля скорости:

a_\tau.

[править]

[править]Примеры законов движения, описываемых дифференциальными уравнениями второго порядка

[править]Закон равноускоренного движения

src=http://upload.wikimedia.org/wikipedia/ru/thumb/f/fd/Motion-law.png/300px-Motion-law.png
style=border-style:
Равноускоренное движение в поле тяжести Земли

Закон равноускоренного движения получается в результате решения простейшего дифференциального уравнения вида:

\frac

Общее решение этого уравнения дается формулой:

x(t) ;

Здесь C1 и C2 — произвольные константы, соответствующие начальной координате и начальной скорости.


Движение с постоянным ускорением \vec называют равноускоренным. Движение с постоянным ускорением подчиняется закону:

\vec ;
\vec .

При этом уравнения движения в координатной форме имеют аналогичный вид:

x(t) ;
v_x(t) .

В этом случае часто говорят о равноускоренном движении, если знаки ax и vx(t) совпадают и о равнозамедленном, если ax и vx(t) имеют противоположные знаки. При этом знак каждой из величин зависит от начального выбора системы отсчета.

Частный случай равноускоренного движения — равномерное движение. В этом случае \vec. Тогда движение описывается закону:

\vec

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.