Главная
»
Самолетостроение
»
Физика
»
Проводники в электростатическом поле. Конденсаторы.
Проводники в электростатическом поле. Конденсаторы.
Проводники в электростатическом поле
Некоторые утверждения:
1. Напряжённость внутри проводника равна нулю (это в электростатическом поле). По понятной причине. Если бы существовало поле, то на заряд е действовала бы сила равная , и под действием этой силы заряды внутри проводника двигались бы (электроны в металле двигались бы). До каких пор они могут двигаться? Ясно, что вечно двигаться они не могут, ну, скажем, у нас кусок железа лежит, и в нём они двигаются, двигаются и двигаются, железо греется при этом, а вокруг ничего не происходит. Это, конечно, было бы нелепо. А происходит следующее: имеем проводник и включается внешнее электростатическое поле, заряды начинают двигаться, при этом происходит такое перемещение зарядов внутри, что их собственное поле полностью гасит внешнее приложенное поле, на этом процесс останавливается. Это перемещение при обычных мерках практически мгновенно. Значение напряжённости электрического поля внутри проводника равно нулю. Отсюда следствие
2. Потенциал внутри проводника – константа. Ну, очевидно, напряжённость – это градиент потенциала, производная от потенциала, если напряжённость – ноль (это означает, что производная – ноль), сама функция – постоянная. Потенциал во всех точках проводника одинаков. Это утверждение верно для всех точек проводника вплоть до поверхности. Отсюда мораль:
3. Поверхность проводника является эквипотенциальной поверхностью. Ну, и отсюда:
4. Силовые линии поля ортогональны поверхности проводника.
Всё это можно резюмировать такой картинкой:
Скажем, имеем точечный заряд и проводник, внесённый в поле этого заряда. Произойдёт следующее: там, где силовые линии входят, сконцентрируется на поверхности проводника отрицательный заряд, скажем, электроны сюда подойдут, а на противоположной стороне появятся положительные заряды, это не скомпенсированные заряды ионов, из которых построена кристаллическая решётка.
Конденсаторы
Пусть мы имеем отдельный проводник, на который посажен заряд q, этот проводник создаёт поле такой конфигурации, как на рисунке 6.2. Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника – линейная функция заряда, который на него посажен, , увеличите заряд вдвое, потенциал увеличится вдвое. Это не очевидная вещь, и я не могу привести каких-нибудь аргументов на пальцах, чтобы пояснить вот эту зависимость. Получается так, что структура поля не меняется, ну, картина силовых линий не меняется, просто растут напряжённости поля во всех точках пропорционально этому заряду, но общая картина не меняется. Ещё раз повторяю – не очевидная вещь. Ну, ладно, потенциал уединённого проводника – линейная функция заряда, . Пишем тогда , вводя коэффициент пропорциональности вот таким способом, где этот коэффициент пропорциональности С определяется геометрией проводника и называется ёмкостью уединённого проводника Ёмкость проводника не является его свойством, то есть на каком-то куске железа нельзя написать «ёмкость такая-то», потому что наличие или отсутствие посторонних тел вблизи меняет эту ёмкость. Его ёмкость, коэффициент пропорциональности, ёмкость отдельного проводника не является свойством этого проводника, она ещё зависит, помимо его, от наличия или отсутствия других тел. Однако, имеются устройства, которые называются конденсаторы, специальные устройства, для которых понятие ёмкости имеет однозначный смысл.
Конденсатором, вообще говоря, называется система из двух проводников, из которых один полностью охватывает другой, то есть, в идеале, конденсатор – вот такая штука:
Если на внутреннем проводнике заряд +q, а на внешнем -q. Внутри возникает электрическое поле вот такой конфигурации (силовые линии ортогональны поверхностям). И никакие внешние заряды не оказывают влияния на это поле, внешние поля не проникают внутрь проводящей полости, то есть от электростатического поля можно заэкранироваться. Хотите жить без электрического поля, вот, залезьте в железную бочку, закройтесь крышкой и всё, оно к вам туда не проникнет, скажем, транзистор у вас там в руках в этой бочке работать не будет, электромагнитные волны туда не будут проникать. Почему, кстати? А потому что внутри проводника поле равно нулю, поскольку напряжённость связана с распределением заряда на поверхности, а начинка проводника уже там не участвует, вы можете выкинуть эту начинку, получить полость, ничего от этого не изменится. Внутри проводника поле определяется только конфигурацией этих проводников и не зависит от внешних зарядов, тогда, если на внутреннем проводнике потенциал , а на внешнем , то мы снова будем иметь такую вещь, что внутренняя энергия пропорциональна заряду: , заряду q, который сидит на картинке внутри проводника. . Такое устройство называется конденсатором, и величина С называется ёмкостью конденсатора. Вот это уже свойство устройства, на нём можно написать: «ёмкость С». Конденсатор – это распространённые элементы в электричестве, в электротехнике и в радиотехнике, и на них прямо написано «ёмкость такая-то», и эта величина уже не зависит от того, что имеется вокруг. По размерности ёмкость что такое?, ёмкость в одну фараду – это ёмкость такого устройства, что, если на него посадить заряд в 1Кл (это колоссальный заряд), то разность потенциалов будет 1В. Нет таких конденсаторов на свете, на Земле просто невозможно построить такой конденсатор, чтобы он имел ёмкость в фараду, поэтому, подходя к этой ёмкости, мы будем использовать микрофарады.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.