Главная
»
Самолетостроение
»
Конструкция и проектирование самолетов
»
Факторы внешней среды, влияющие на конструкцию самолёта и безопасность полёта.
Факторы внешней среды, влияющие на конструкцию самолёта и безопасность полёта.
При проектировании ЛА для выработки правильного решения необходимо моделировать ЛА, внешнюю среду и процессы их взаимодействия. Модель МСА(международная стандартная атмосфера: g=9,877м/с^2, p=101325Па (760мм.рт.ст), T=288,15K (15°C), ρ=1,225 кг/м^3, скорость звука a=340м/с), включенная в общую модель проектирования ЛА, позволяет оценить его летно-технические характеристики (ЛТХ) в полных диапазонах высот и скоростей, оговоренных в ТЗ на проектирование. Однако реальные условия полета могут существенно отличаться от расчетных. Проектировщик должен знать, какой уровень неблагоприятных факторов приведет к катастрофическим последствиям. Ветер. Действительное распределение давления в атмосфере отличается от предполагаемого (постоянного для данной высоты) распределения, принятого в неподвижной атмосфере, описываемой МСА. В тропосфере происходит очень интенсивное вертикальное перемешивание воздуха. На высотах 8...10 км, где обычно пролегают трассы полетов пассажирских самолетов, возникают струйные течения со скоростями 10...30 м/с - ураганный ветер. Таким образом, полет проходит в турбулентной неспокойной атмосфере. В стратосфере также происходит интенсивная циркуляция воздуха с резкими ветрами, образуются горизонтальные струйные течения со скоростями 50... 150 м/с шириной в сотни километров. Полет в турбулентной атмосфере обусловливает колебательный характер траектории самолета. При попадании самолета из нисходящего потока в восходящий, где вертикальная скорость воздуха превышает 20...30 м/с, возможен резкий заброс самолета вверх на 1000...2000 м. Это приводит к резкому увеличению нагрузок, действующих на конструкцию самолета. В исключительных случаях самолет может разрушиться. При полете самолета в болтанку отдельные элементы конструкции растягиваются, сжимаются, изгибаются. В результате материал конструкции устает, в элементах конструкции возникают микротрещины, которые растут от полета к полету и в конечном итоге могут привести к так называемому усталостному разрушению конструкции. Болтанка нарушает спектр потока воздуха, подходящего к воздухозаборникам двигателей, создается угроза самовыключения двигателей. При разработке компоновки и конструкции самолета необходимо учитывать это явление: предусматривать различные меры, повышающие усталостную прочность конструкции; создавать безопасно повреждаемые конструкции; обеспечивать возможность надежного визуального или инструментального контроля состояния конструкции. Надежное прогнозирование погоды и струйных течений по трассе полета, создание бортовых систем обнаружения турбулентности не только в облачности, но и при ясной погоде позволяют значительно уменьшить вероятность попадания самолета в экстремальные ситуации. Радикально проблема обеспечения безопасности полета в турбулентной атмосфере может быть решена созданием самолетов, геометрия крыла которых изменяется в полете активной системой управления (АСУ). По командам от датчиков параметров движения АСУ автоматически отклоняет различные аэродинамические поверхности самолета для перераспределения, уменьшения или увеличения аэродинамических сил, т.е. непосредственно управляет ими с целью ослабления воздействия турбулентности, улучшения аэродинамических и эксплуатационных характеристик самолета и повышения эффективности его конструкции.Воздействие солнечного излучения существенным образом влияет на физико-механические характеристики материалов, из которых изготовлен самолет: растрескиваются лакокрасочные покрытия, защищающие конструкцию от коррозии; теряет упругие свойства резина в различных уплотнениях; ухудшается прозрачность иллюминаторов. Процессы, происходящие в ионосфере Земли определяют качество радиосвязи. С увеличением высоты полета ЛА возрастает уровень неблагоприятного воздействия этих факторов на экипаж, конструкцию и системы радиоэлектронного оборудования ЛА. Полет ЛА и в пределах радиационных поясов Земли, и в космическом пространстве требует специальной радиационной защиты экипажа и элементов оборудования. Влажность и химический состав воздуха. Пары воды, находящиеся в воздухе, осадки в виде дождя и снега содержат соли, кислоты и щелочи, которые вызывают коррозию элементов конструкции самолета. В результате коррозии тонкостенные элементы конструкции могут быть значительно повреждены, ослаблены и вследствие этого могут разрушиться под воздействием нагрузки. Меры защиты от коррозии - нанесения на конструкцию защитных металлических и лакокрасочных пленок. Сложной проблемой является защита от коррозии конструкций гидросамолетов, базирующихся на морских акваториях. Конструктор должен предусматривать различные мероприятия, препятствующие скоплению влаги внутри конструкции и облегчающие ее удаление из конструкции самолета. Озон, образующийся в стратосфере под действием ультрафиолетовой солнечной радиации, является очень сильным окислителем, оказывающим неблагоприятное воздействие на металлические и неметаллические конструкционные материалы. При длительных полетах ЛА в стратосфере необходимо решать проблемы обеспечения безопасности экипажа и пассажиров в кабинах, вентилируемых воздухом непосредственно из окружающей среды, так как озон относится к числу веществ, чрезвычайно токсичных для человеческого организма.Обледенение. При полете самолета в тропосфере и нижних слоях стратосферы на поверхности самолета образуется слой льда - происходит обледенение. Особенно интенсивно лед образуется на передних кромках крыла, оперения, воздухозаборниках двигателей, остеклении кабин. Если не бороться с этим явлением, слой льда быстро нарастает и на передних кромках крыла и оперения толщина льда может достигнуть 5...10 см. Отложения льда не только увеличивают массу самолета, но и резко ухудшают обтекание его воздушным потоком, полет становится невозможным. Поэтому в конструкции всех современных самолетов предусмотрены противообледенительные системы. Электрические явления в атмосфере. При полете в результате трения о поверхность самолета воздуха, капель воды, пыли отдельные части самолета заряжаются статическим электричеством. Разность электрических потенциалов между отдельными частями самолета может достигать нескольких тысяч вольт. Если не принять специальных мер, возможны электрический разряд между элементами конструкции и, как следствие, пожар на борту самолета. Кроме того, разность потенциалов отдельных частей приводит к электрохимической коррозии, создает помехи в работе пилотажно-навигационного оборудования. На стоянке самолета и в полете возможно также попадание в него молнии. Биосфера. Проектировщику приходится учитывать и взаимодействие самолета с живыми организмами, населяющими нижнюю часть атмосферы. Микробы, бактерии, насекомые могут наносить существенные повреждения деталям самолета, выполненным из неметаллических материалов. Чаще всего эта проблема решается правильным выбором материалов с учетом климатических условий, в которых будет эксплуатироваться самолет. Встреча летящего самолета с птицей. При высокой скорости полета столкновение с птицей может быть эквивалентно удару орудийного снаряда. Форма, конструкция каркаса остекления, само остекление кабины экипажа помимо прочих требований должны удовлетворять и требованию птицестойкости, т.е. способности самолета выдержать столкновение с птицей без катастрофических повреждений. Необходимо также обеспечивать защиту двигателя самолета от разрушения в случае попадания птицы в воздухозаборник. В зоне аэродрома могут быть предприняты меры для отпугивания птиц. И здесь проектировщик также должен принимать решение в условиях неопределенности: результаты столкновения самолета с ласточкой или орлом будут совершенно различны.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.