Главная
»
Информационные системы
»
Интеллектуальные ИС
»
Архитектура нейронных сетей. Алгоритмы обучения нейронных сетей.
Архитектура нейронных сетей. Алгоритмы обучения нейронных сетей.
Трудно ответить на вопрос о том, как конкретно на финансовых рынках возникает и используется информация, которая может приносить прибыль. Исследования почти всегда показывают, что никакая устойчивая стратегия торговли не дает постоянной прибыли, и это, во всяком случае, так, если учитывать еще и расходы на совершение сделок. Хорошо известно также, что участники рынка (и весь рынок в целом) могут принимать совершенно различные решения исходя из сходной или даже неизменной информации.
Участники рынка в своей работе, по-видимому, не ограничиваются линейными состоятельными правилами принятия решений, а имеют в запасе несколько сценариев действий, и то, какой из них пускается в ход, зависит подчас от внешних незаметных признаков. Один из возможных подходов к многомерным и зачастую нелинейным информационным рядам финансового рынка заключается в том, чтобы по возможности подражать образцам поведения участников рынка, используя такие методы искусственного интеллекта, как экспертные системы или нейронные сети.
Одной из сфер применения нейронных сетей для ряда ведущих банков стала проблема изменений позиции доллара США на валютном рынке при большом числе неизменных объективных показателей. Еще одной проблемой, значение которой в последнее время возрастает, является моделирование потоков средств между институциональными инвесторам
Функции активации f могут быть различных видов:
- линейная: выходной сигнал нейрона равен его потенциалу,
- ступенчатая: нейрон принимает решение, выбирая один из двух вариантов (активен/неактивен),
- линейная с насыщением: нейрон выдает значения, промежуточные между двумя предельными значениями А и В
- многопороговая: выходной сигнал может принимать одно из q значений, определяемых (q -1) порогом внутри предельных значений А и В,
- сигмоидная: рассматриваются два вида сигмоидных функций:
Нейроны с прямой связью: Нейронные сети с прямой связью состоят из статических нейронов, так что сигнал на выходе сети появляется в тот же момент, когда подаются сигналы на входвыходные элементы
Скрытые элементы
Входные элементы
^ Нейронная сеть с прямой связью с одним скрытым слоем (пopoгu не отмечены)
На этапе обучения происходит вычисление синаптических коэффициентов в процессе решения нейронной сетью задач (классификации, предсказания временных рядов и др.), в которых нужный ответ определяется не по правилам, а с помощью примеров, сгруппированных в обучающие множества. Такое множество состоит из ряда примеров с указанным для каждого из них значением выходного параметра, которое было бы желательно получить. Действия, которые при этом происходят, можно назвать контролируемым обучением: «учитель» подает на вход сети вектор исходных данных, а на выходной узел сообщает желаемое значение результата вычислений. Контролируемое обучение нейронной сети можно рассматривать как решение оптимизационной задачи. Ее целью является минимизация функции ошибок, или невязки, она данном множестве примеров путем выбора значений весов W
Целью процедуры минимизации является отыскание глобального минимума - достижение его называется сходимостью процесса обучения. Поскольку невязка зависит от весов нелинейно, получить решение в аналитической форме невозможно, и поиск глобального минимума осуществляется посредством итерационного процесса - так называемого обучающего алгоритма,который исследует поверхность невязки и стремится обнаружить на ней точку глобального минимума.
Рассмотрим теперь наиболее распространенный алгоритм обучения нейронных сетей с прямой связью - алгоритм обратного распространения ошибки (Backpropagation, ВР), представляющий собой развитие так называемого обобщенного дельта-прав WIG. Этот алгоритм был заново открыт и популяризирован в 1986 г. Ру-мельхартом и МакКлеландом из знаменитой Группы по изучению параллельных распределенных процессов в Массачусетском технологическом институте. В этом пункте мы более подробно рассмотрим математическую суть алгоритма. Он является алгоритмом градиентного спуска, минимизирующим суммарную квадратичную ошибку
Здесь индекс i пробегает все выходы многослойной сети.
Основная идея ВР состоит в том, чтобы вычислять чувствительность ошибки сети к изменениям весов. Для этого нужно вычислить частные производные от ошибки по весам
ИМПУЛЬС
Другой часто применяемый прием состоит в том, что при определении направления поиска к текущему градиенту добавляется поправка - вектор смещения предыдущего шага, взятый с некоторым коэффициентом. Можно сказать, что учитывается уже имеющийся импульс движения. Окончательная формула для изменения весов выглядит так:
где 11- число в интервале (0,1), которое задается пользователем..
ШУМ
в финансовых приложениях данные зашумлены особенно сильно. Например, совершение сделок может регистрироваться в базе данных с запозданием, причем в разных случаях- с разным.
Для того чтобы устранить произвол в разбиении базы данных, могут быть применены методы повторных проб. Рассмотрим один из таких методов, который называется перекрестным подтверждением. Его идея состоит в том, чтобы случайным образом разбить базу данных на q попарно непересекающихся подмножеств. Затем производится q обучений на (q -1)множестве, а ошибка вычисляется по оставшемуся множеству. Если q достаточно велико, например, равно 10, каждое обучение задействует большую часть исходных данных. Если процедура обучения надежна, то результаты по q различным моделям должны быть очень близки друг к другу. После этого итоговая характеристика определяется как среднее всех полученных значений ошибки
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.