Главная
»
Информационные системы
»
Интеллектуальные ИС
»
Динамические сети.Самоорганизующиеся сети.
Динамические сети.Самоорганизующиеся сети.
Динамические сети.
Они построены из динамических нейронов, чье поведение описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов (возможно, и от себя самого) и из окружающей среды. Этот тип сетей имеет важное значение, так как с его помощью можно моделировать нелинейные динамические системы, например: ассоциативная память, нелинейная обработка сигналов, моделирование конечных автоматов, идентификация систем, задачи управления.
СЕТИ ХОПФИЛДА
С помощью рекуррентных сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики, грамматики) образцы (рис. 13.4). Рекуррентная нейронная сеть простейшего вида введена Хопфилдом; она построена из N нейронов, связанных каждый с каждым, причем все нейроны являются выходными.
Сети такой конструкции используются, главным образом, в качестве ассоциативной памяти, а также в задачах нелинейной фильтрации данных и грамматического вывода. Кроме этого, недавно они были применены для предсказывания и для распознавания закономерностей в поведении цен акций.
58. Самоорганизующиеся сети.
Сеть такого типа рассчитана на самостоятельное обучение: во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже полученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием «близости.
Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько кластеров сеть может распознавать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синоптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутренние связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход.
Выходные элементы соревнуются между собой за право вступить в действие и «получить урок». Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору в смысле расстояния, определяемого, например, евклидовой метрикой. У элемента-победителя это расстояние будет меньше, чем у всех остальных. На текущем шаге обучения менять веса разрешается только элементу-победителю (и, может быть, его непосредственным соседям); веса остальных элементов при этом как бы заморожены. Выигравший элемент заменяет свой весовой вектор, немного перемещая его в сторону входного вектора. После обучения на достаточном количестве примеров совокупность весовых векторов с большей точностью приходит в соответствие со структурой входных примеров - векторы весов в буквальном смысле моделируют распределение входных образцов.
Самоорганизующаяся сеть Кохонена. Изображены только связи, идущие в i-u узел. Окрестность узла показана пунктиром
Очевидно, для правильного понимания сетью входного распределения нужно, чтобы каждый элемент сети становился победителем одинаковое число раз - весовые векторы должны бытьравновероятными.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.