Главная » Информационные системы » Технология программирования » Источники ошибок в ПС. Понятие надежности ПС. Общие принципы обеспечения надежности ПС

Источники ошибок в ПС. Понятие надежности ПС. Общие принципы обеспечения надежности ПС

 

Дейкстра [2.1] выделяет три интеллектуальные возможности человека, используемые при разработке ПС:

·                    способность к перебору,

·                    способность к абстракции,

·                    способность к математической индукции.

 

Способность человека к перебору связана с возможностью последовательного переключения внимания с одного предмета на другой с узнаванием искомого предмета. Эта способность весьма ограничена - в среднем человек может уверенно (не сбиваясь) перебирать в пределах 1000 предметов (элементов). Человек должен научиться действовать с учетом этой своей ограниченности. Средством преодоления этой ограниченности является его способность к абстракции, благодаря которой человек может объединять разные предметы или экземпляры в одно понятие, заменять множество элементов одним элементом (другого рода). Способность человека к математической индукции позволяет ему справляться с бесконечными последовательностями.

 

При разработке ПС человек имеет дело с системами. Под системой будем понимать совокупность взаимодействующих (находящихся в отношениях) друг с другом элементов. ПС можно рассматривать как пример системы. Логически связанный набор программ является другим примером системы. Любая отдельная программа также является системой. Понять систему - значит осмысленно перебрать все пути взаимодействия между ее элементами. В силу ограниченности человека к перебору будем различать простые и сложные системы [2.2]. Под простой будем понимать такую систему, в которой человек может уверенно перебрать все пути взаимодействия между ее элементами, а под сложной будем понимать такую систему, в которой он этого сделать не в состоянии. Между простыми и сложными системами нет четкой границы, поэтому можно говорить и о промежуточном классе систем: к таким системам относятся программы, о которых программистский фольклор утверждает, что в каждой отлаженной программе имеется хотя бы одна ошибка.

 

При разработке ПС мы не всегда можем уверенно знать о всех связях между ее элементами из-за возможных ошибок. Поэтому полезно уметь оценивать сложность системы по числу ее элементов: числом потенциальных путей взаимодействия между ее элементами, т.е. n! , где n - число ее элементов. Систему назовем малой, если n < 7 (6! = 720 < 1000), систему назовем большой, если n > 7 . При n=7 имеем промежуточный класс систем. Малая система всегда проста, а большая может быть как простой, так и сложной. Задача технологии программирования - научиться делать большие системы простыми.

 

Полученная оценка простых систем по числу элементов широко используется на практике. Так, для руководителя коллектива весьма желательно, чтобы в нем не было больше шести взаимодействующих между собой подчиненных. Весьма важно также следовать правилу: все, что может быть сказано, должно быть сказано в шести пунктах или меньше. Этому правилу мы будем стараться следовать в настоящем пособии: всякие перечисления взаимосвязанных утверждений (набор рекомендаций, список требований и т.п.) будут соответствующим образом группироваться и обобщаться. Полезно ему следовать и при разработке ПС.

Обеспечение надёжности — основной мотив разработки программных средств

 

Рассмотрим теперь общие принципы обеспечения надёжности ПС, что, как мы уже подчёркивали, является основным мотивом разработки ПС, задающим специфическую окраску всем технологическим процессам разработки ПС. В технике известны четыре подхода обеспечению надёжности [11]:

  • предупреждение ошибок;
  • самообнаружение ошибок;
  • самоисправление ошибок;
  • обеспечение устойчивости к ошибкам.

Целью подхода предупреждения ошибок — не допустить ошибок в готовых продуктах, в нашем случае — в ПС. Проведенное рассмотрение природы ошибок при разработке ПС позволяет для достижения этой цели сконцентрировать внимание на следующих вопросах:

  • борьбе со сложностью;
  • обеспечении точности перевода;
  • преодоления барьера между пользователем и разработчиком;
  • обеспечения контроля принимаемых решений.

Этот подход связан с организацией процессов разработки ПС, т.е. с технологией программирования. И хотя, как мы уже отмечали, гарантировать отсутствие ошибок в ПС невозможно, но в рамках этого подхода можно достигнуть приемлемого уровня надежности ПС.

Остальные три подхода связаны с организацией самих продуктов технологии, в нашем случае — программ. Они учитывают возможность ошибки в программах. Самообнаружение ошибки в программе означает, что программа содержит средства обнаружения отказа в процессе ее выполнения. Самоисправление ошибки в программе означает не только обнаружение отказа в процессе ее выполнения, но и исправление последствий этого отказа, для чего в программе должны иметься соответствующие средства. Обеспечение устойчивости программы к ошибкам означает, что в программе содержатся средства, позволяющие локализовать область влияния отказа программы, либо уменьшить его неприятные последствия, а иногда предотвратить катастрофические последствия отказа. Однако, эти подходы используются весьма редко (может быть, относительно чаще используется обеспечение устойчивости к ошибкам). Связано это, во-первых, с тем, что многие простые методы, используемые в технике в рамках этих подходов, неприменимы в программировании, например, дублирование отдельных блоков и устройств (выполнение двух копий одной и той же программы всегда будет приводить к одинаковому эффекту — правильному или неправильному). А, во-вторых, добавление в программу дополнительных средств приводит к её усложнению (иногда — значительному), что в какой-то мере мешает методам предупреждения ошибок.

 


Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Поделиться
Дисциплины