Главная
»
Общенаучные дисциплины
»
Математика (1 семестр)
»
Достаточные условия существования экстремума.
Достаточные условия существования экстремума.
Теорема 1.Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале.
Доказательство. Возьмем x1 < x2 из интервала (a, b). Для функции f(x) на интервале [x1 , x2] выполнены все условия теоремы Лагранжа. Поэтому
f(x2 ) - f(x1 ) = (x2 - x1 )f '(x0 ),
где x0 лежит в интервале (x1 , x2), а следовательно, и в интервале (a, b). По условию f '(x0 ) ³ 0 и x2 > x1, следовательно,
f(x2 ) - f(x1 ) ³ 0,
или
f(x2 )³ f(x1 ) при x2 > x1 ,
что и требовалось доказать.
Аналогично доказывается и другая теорема.
Теорема 2. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.
Теорема 3. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с + на -, и минимум, если знак меняется с - на +).
Доказательство. Если производная f '(x) при переходе через x = x0 меняет знак с + на -, то это означает, что при достаточно малом h производная f '(x) положительна в интервале (x0 - h, x0 ) и отрицательна в интервале (x0 , x0 + h). Следовательно, функция f(x) в интервале (x0 - h, x0 ) возрастает, а в интервале (x0 , x0 + h) убывает, то есть в точке x0 достигает максимума.
Аналогично доказывается утверждение данной теоремы относительно минимума функции.
Заметим, что если производная f '(x), обращаясь в нуль в точке x0, не меняет знака, то в этой точке функция не имеет экстремума, так как с обеих сторон от точки x0 функция f(x) будет возрастать или убывать.
Теорема 4. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.
Максимум, минимум и экстремумы функции. Необходимое условие существования экстремума.
Максимум и минимум функции.
Определение. Точка x0 называется точкой минимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≥ f(x0.
Определение. Точка x0 называется точкой максимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≤ f(x0.
Для точек минимума и максимума функции есть общее определение - точки экстремума. Значение функции в этих точках соответственно назывется максимумом или минимумом этой функции. Общее название - экстремум функции. Точки максимума обычно обозначают xmax, а точки минимума - xmin
Доказательство. Докажем необходимость условия существования максимума. Пусть f '(x) = 0, f ''(x) > 0.
Так как f ''(x) непрерывна, то в достаточно малом интервале (x0 - h, x0 + h) вторая производная положительна: f ''(x) > 0. Это означает, что f '(x) возрастает в этом интервале. Так как при этом f '(x0 )=0, то f '(x)<0 в интервале (x0 - h, x0 ) и f '(x)>0 в интервале (x0 , x0 + h).
Таким образом, функция f(x) убывает в интервале (x0 - h, x0 ) и возрастает в интервале (x0 , x0 + h). Поэтому в точке x0 функция f(x) имеет минимум. Аналогично доказывается достаточность условия существования максимума. На рисунке функция f(x) имеет в точке x1 минимум, в точке x2 - максимум.
Второй производной можно воспользоваться при решении задач на отыскание максимума и минимума функции.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.