Приведем точные определения точек экстремума.
Определение. Точка x0 называется точкой минимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≥ f(x0.
Это наглядно показано на рисунке 1:
рисунок 1
Определение. Точка x0 называется точкой максимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≤ f(x0.
Это наглядно показано на рисунке 2:
рисунок 2
По определению значение функции f в точке x0 является наибольшим среди значений функции в окрестности этой точки, поэтому график функции в окрестности x0 имеет обычно либо вид гладкого холма, либо вид острого пика (рис. 1 а) и б) соответственно).
В окрестности точки минимума графики изображаются в виде загругленной или острой впадины (рис. 2 а) и б) соответственно).
Другие примеры поведения графиков функций в точках максимума и минимума приведены на рисунке ниже:
Слева направо: a - точка максимума; a - точка минимума; каждая точка из промежутка [-1; 0] является как точкой максимума, так и точкой минимума.
Для точек минимума и максимума функции есть общее определение - точки экстремума. Значение функции в этих точках соответственно назывется максимумом или минимумом этой функции. Общее название - экстремум функции. Точки максимума обычно обозначают xmax, а точки минимума - xmin.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.