» » »

21. Различные уравнения на плоскости. Угол между прямыми. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой.

Уравнение прямой на плоскости



Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой.

 

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

•  C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

•  А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

•  В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

•  В = С = 0, А ≠0 – прямая совпадает с осью Оу

•  А = С = 0, В ≠0 – прямая совпадает с осью Ох

 

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

 

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.

 

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

 

Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А.

Получаем: 3 – 2 + C = 0, следовательно С = -1.

Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

 

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой, проходящей через эти точки:

 

 

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х2 и х = х 1 , если х 1 = х2 .

Дробь = k называется угловым коэффициентом прямой.

 

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

 

Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту

 

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

 

 

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

 

Уравнение прямой по точке и направляющему вектору

 

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

 

Определение. Каждый ненулевой вектор ( α1 , α2 ), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

 

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

 

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

 

1 * A + (-1) * B = 0, т.е. А = В.

 

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

 

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

 

х + у - 3 = 0

 

Уравнение прямой в отрезках

 

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или

, где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

 

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

 

С = 1, , а = -1, b = 1.

 

 

Нормальное уравнение прямой

 

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

 

xcosφ + ysinφ - p = 0 –

нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы μ ? С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

 

Пример. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.

уравнение этой прямой в отрезках:

уравнение этой прямой с угловым коэффициентом: (делим на 5)

нормальное уравнение прямой:

 

; cos φ = 12/13; sin φ= -5/13; p = 5.

C ледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.

 

Пример. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см 2 .

Уравнение прямой имеет вид: , ab /2 = 8; a = 4; -4.

a = -4 не подходит по условию задачи.

Итого: или х + у – 4 = 0.

 

Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.

 

Уравнение прямой имеет вид: >, где х 1 = у 1 = 0; x2 = -2; y2 = -3.

 

 

Угол между прямыми на плоскости

 

Определение. Если заданы две прямые y = k1 x + b1 , y = k 2x + b2 , то острый угол между этими прямыми будет определяться как

 

.

Две прямые параллельны, если k1 = k2 .

Две прямые перпендикулярны, если k1 = -1/ k2 .

 

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

 

Уравнение прямой, проходящей через данную точку

перпендикулярно данной прямой

 

Определение. Прямая, проходящая через точку М11 , у1 ) и перпендикулярная к прямой у = kx + b представляется уравнением:

 

 

Расстояние от точки до прямой

 

Теорема. Если задана точка М(х0 , у0 ), то расстояние до прямой Ах + Ву + С =0 определяется как

.

 

Доказательство. Пусть точка М 11, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :

(1)

Координаты x1 и у1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0 ) + B(y – y0 ) + Ax0 + By0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

 

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

 

k 1 = -3; k 2 = 2; tgφ = ; φ= p /4.

 

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

 

Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.

 

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

 

Находим уравнение стороны АВ: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b .

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3 x + 2 y – 34 = 0.



Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.