Главная
»
Общенаучные дисциплины
»
Математика (2 семестр)
»
Приближенное определение определенного интеграла методом Симпсона
Приближенное определение определенного интеграла методом Симпсона
Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.
Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с в точках :
Проинтегрируем :
Формула:
и называется формулой Симпсона.
Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки
Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у на отрезке существуют непрерывные производные . Составим разность
К каждому из этих двух интегралов уже можно применить теорему о среднем, поскольку непрерывна на и функция неотрицательна на первом интервале интегрирования и неположительна на втором ( то есть не меняет знака на каждом из этих интервалов). Поэтому:
(мы воспользовались теоремой о среднем, поскольку - непрерывная функция; ).
Дифференцируя дважды и применяя затем теорему о среднем, получим для другое выражение:
, где
Из обеих оценок для следует, что формула Симпсона является точной для многочленов степени не выше третьей. Запишем формулу Симпсона, напрмер, в виде:
, .
Если отрезок интегрирования слишком велик, то его разбивают на равных частей (полагая ), после чего к каждой паре соседних отрезков , ,..., применяют формулу Симпсона, именно:
Запишем формулу Симпсона в общем виде:
(1)
(2)
Погрешность формулы Симпсона - метода четвертого порядка:
, (3)
Так как метод Симпсона позволяет получить высокую точность, если не слишком велика. В противном случае метод второго порядка может дать большую точность.
Например, для функции форма трапеции при для дает точный результат , тогда как по формуле Симпсона получаем
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.