Пусть задана функция f(x, y). Тогда каждая из ее частных производных (если они, конечно, существуют) и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных x, y и может, следовательно также иметь частные производные. Частная производная обозначается через или fxx'', а через или fxy''. Таким образом,
,
и, аналогично,
, .
Производные fxx'',fxy'',fyx'' и fyy'' называются частными производными второго порядка. Рассматривая частные производные от них, получим всевозможные частные производные третьего порядка: ,, и т. д.