Дифференциалом порядка n, где n > 1 от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n — 1), то есть
- .
Дифференциал высшего порядка функции одной переменной
Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:
Отсюда можно вывести общий вид дифференциала n-го порядка от функции :
При вычислении дифференциалов высших порядков очень важно, что есть произвольное и не зависящее от , которое при дифференцировании по следует рассматривать как постоянный множитель.
Дифференциал высшего порядка функции нескольких переменных
Если функция имеет непрерывные частные производные второго порядка, то дифференциал второго порядка определяется так: .
Символически общий вид дифференциала n-го порядка от функции выглядит следующим образом:
где , а произвольные приращения независимых переменных .
Приращения рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему. Сложность выражения дифференциала возрастает с увеличением числа переменных.
Неинвариантность дифференциалов высшего порядка
При , -й дифференциал не инвариантен (в отличие от инвариантности первого дифференциала), то есть выражение зависит, вообще говоря, от того, рассматривается ли переменная как независимая, либо как некоторая промежуточная функция другого переменного, например, .
Для доказательства неинвариантности дифференциалов высшего порядка достаточно привести пример.
При n = 2 и :
- если — независимая переменная, то
- если и
- при этом, и
С учётом зависимости , уже второй дифференциал не обладает свойством инвариантности при замене переменной. Также не инвариантны дифференциалы порядков 3 и выше.
Дополнения
- С помощью дифференциалов, функция при условии существования её (n + 1) первых производных может быть представлена по формуле Тейлора:
- для функции с одной переменной:
- , ;
- для функции с несколькими переменными:
- ,
- Если первый дифференциал равен нулю, а второй дифференциал функции явлется положительно определённым (отрицательно определенным), то точка является точкой строгого минимума (соответственно строгого максимума); если же второй дифференциал функции является неопределённым, то в точке нет экстремума.