Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом (набла) (в Юникоде
U+2207
, ∇). Для трёхмерного евклидова пространства в прямоугольных декартовых координатах оператор набла определяется следующим образом:
,
где — единичные векторы по осям x, y, z.
Через оператор набла естественным способом выражаются основные операции векторного анализа: grad (градиент), div (дивергенция), rot (ротор), а также оператор Лапласа (см. ниже). Широко употребляется в описанном смысле в физике и математике (хотя иногда графический символ используется также для обозначения некоторых других, хотя в некотором отношении не совсем далеких от рассмотренного, математических объектов, например, ковариантной производной).
Под n-мерным оператором набла подразумевается вектор с компонентами в n-мерном пространстве.
Иногда, особенно при начертании от руки, над оператором набла рисуют стрелку: — чтобы подчеркнуть векторный характер оператора. Смысл такого начертания ничем не отличается от обычного
.
Этот вектор приобретает смысл в сочетании со скалярной или векторной функцией, к которой он применяется.
Если умножить вектор на скаляр φ, то получится вектор
который представляет собой градиент функции φ.
Если вектор скалярно умножить на вектор
, получится скаляр
то есть дивергенция вектора .
Если умножить на
векторно, то получится ротор вектора
:
Соответственно, скалярное произведение есть скалярный оператор, называемый оператором Лапласа. Последний обозначается также
. В декартовых координатах оператор Лапласа определяется следующим образом:
Поскольку оператор набла является дифференциальным оператором, то при преобразовании выражений необходимо учитывать как правила векторной алгебры, так и правила дифференцирования. Например:
То есть производная выражения, зависящего от двух полей, есть сумма выражений, в каждом из которых дифференцированию подвергается только одно поле.
Для удобства обозначения того, на какие поля действует набла, принято считать, что в произведении полей и операторов каждый оператор действует на выражение, стоящее справа от него, и не действует на всё, что стоит слева. Если требуется, чтобы оператор действовал на поле, стоящее слева, это поле каким-то образом отмечают, например, ставя над буквой стрелочку:
Такая форма записи обычно используется в промежуточных преобразованиях. Из-за её неудобства в окончательном ответе от стрелочек стараются избавиться.
Так как существуют различные способы перемножения векторов и скаляров, с помощью оператора набла можно записать различные виды дифференцирования. Комбинирование скалярных и векторных произведений даёт 7 различных вариантов производных второго порядка:
Для достаточно гладких полей (дважды непрерывно дифференцируемых) эти операторы не независимы. Два из них всегда равны нулю:
Два всегда совпадают:
Три оставшихся связаны соотношением:
Еще одно может быть выражено через тензорное произведение векторов:
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.