Главная » Общенаучные дисциплины » Математика (2 семестр) » Производная сложной функции. Полная производная. Полный дифференциал сложной функции.

Производная сложной функции. Полная производная. Полный дифференциал сложной функции.

44.6. Производная сложной функции. Полная производная

Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.

Теорема 44.4. Если z = ƒ(х;у) — дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) — дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.

Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые). 

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) — сложная функция независимых переменных u и v. Ее частные производные можно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в ней соответствующими частными производными.

Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).

44.3. Дифференцируемость и полный дифференциал функции

Пусть функция z =ƒ (х; у) определена в некоторой окрестности точки М(х;у). Составим полное приращение функции в точке М

Функция z = ƒ (х; у) называется дифференцируемой в точке М(х; у), если ее полное приращение в этой точке можно представить в виде

где а = а(Δх, Δу)0 и β=β(Δх,Δу)0 при Δх0, Δу0. Сумма первых двух слагаемых в равенстве (44.1) представляет собой главную часть приращения функции.

Главная часть приращение функции z=ƒ(х;у), линейная относительно Δх и Δу, называется полным дифференциалом этой функции и обозначается символом dz:

dz=A*Δx+B*Δy.     (44.2)

Выражения А•Δх и В•Δу называют частными дифференциалами. Для независимых переменных х и у полагают Δх=dx и Δу=dy. Поэтому равенство (44.2) можно переписать в виде

dz=Adx+Bdy.     (44.3)

 

Теорема 44.2 (необходимое условие дифференцируемости функции). Если функция z = ƒ(х;у) дифференцируема в точке М(х;у), то она непрерывна в этой точке, имеет в ней частные производные dz/dx и dz/dy, причем dz/dx = А, dz/dy = В.

Так как функция дифференцируема в точке М, то имеет место равенство (44.1). Это означает, что функция непрерывна в точке М. Положив Δу = 0, Δх ≠ 0 в равенстве (44.1), получим: Δz = А • Δх + а • Δх. Отсюда находим Переходя к пределу при Δх  0, получим

Таким образом, в точке М существует частная производная ƒ'x(х;у) = А. Аналогично доказывается, что в точке М существует частная производная

Равенство (44.1) можно записать в виде

где g=аΔх+βΔу0 при Δх  0, Δу  0.

Отметим, что обратное утверждение не верно, т. е. из непрерывности функции или существования частных производных не следует дифференцируемость функции. Так, непрерывная функция не дифференцируема в точке (0;0).

Как следствие теоремы получаем формулу для вычисления полного дифференциала. Формула (44.3) принимает вид где— частные дифференциалы функции z=ƒ(х;у).

Теорема 44.3 (достаточное условие дифференцируемости функции). Если функция z = ƒ(х;у) имеет непрерывные частные производные z'x и z'y в точке М(х;у), то она дифференцируема в этой точке и ее полный дифференциал выражается формулой (44.5).

Примем теорему без доказательства.

Отметим, что для функции у=ƒ(х) одной переменной существование производной ƒ'(х) в точке является необходимым и достаточным условием ее дифференцируемости в этой точке.

Чтобы функция z=ƒ(х;у) была дифференцируема в точке, необходимо, чтобы она имела в ней частные производные, и достаточно, чтобы она имела в точке непрерывные частные производные.

Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.


Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Поделиться
Дисциплины