44.6. Производная сложной функции. Полная производная
Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.
Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.
Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде
где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые).
Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:
Формула (44.9) носит название формулы полной производной.
Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) — сложная функция независимых переменных u и v. Ее частные производные можно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в ней соответствующими частными производными.
Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).
44.3. Дифференцируемость и полный дифференциал функции
Пусть функция z =ƒ (х; у) определена в некоторой окрестности точки М(х;у). Составим полное приращение функции в точке М
Функция z = ƒ (х; у) называется дифференцируемой в точке М(х; у), если ее полное приращение в этой точке можно представить в виде
где а = а(Δх, Δу)→0 и β=β(Δх,Δу)→0 при Δх→0, Δу→0. Сумма первых двух слагаемых в равенстве (44.1) представляет собой главную часть приращения функции.
Главная часть приращение функции z=ƒ(х;у), линейная относительно Δх и Δу, называется полным дифференциалом этой функции и обозначается символом dz:
dz=A*Δx+B*Δy. (44.2)
Выражения А•Δх и В•Δу называют частными дифференциалами. Для независимых переменных х и у полагают Δх=dx и Δу=dy. Поэтому равенство (44.2) можно переписать в виде
dz=Adx+Bdy. (44.3)
Так как функция дифференцируема в точке М, то имеет место равенство (44.1). Это означает, что функция непрерывна в точке М. Положив Δу = 0, Δх ≠ 0 в равенстве (44.1), получим: Δz = А • Δх + а • Δх. Отсюда находим Переходя к пределу при Δх → 0, получим
Таким образом, в точке М существует частная производная ƒ'x(х;у) = А. Аналогично доказывается, что в точке М существует частная производная
Равенство (44.1) можно записать в виде
где g=аΔх+βΔу→0 при Δх → 0, Δу → 0.
Отметим, что обратное утверждение не верно, т. е. из непрерывности функции или существования частных производных не следует дифференцируемость функции. Так, непрерывная функция не дифференцируема в точке (0;0).
Как следствие теоремы получаем формулу для вычисления полного дифференциала. Формула (44.3) принимает вид где— частные дифференциалы функции z=ƒ(х;у).
Примем теорему без доказательства.
Отметим, что для функции у=ƒ(х) одной переменной существование производной ƒ'(х) в точке является необходимым и достаточным условием ее дифференцируемости в этой точке.
Чтобы функция z=ƒ(х;у) была дифференцируема в точке, необходимо, чтобы она имела в ней частные производные, и достаточно, чтобы она имела в точке непрерывные частные производные.
Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.