Главная
»
Общенаучные дисциплины
»
Математика (2 семестр)
»
Задачи, приводящие к понятию определенного интеграла.Определенный интеграл. Теорема о существовании определенного интеграла.
Задачи, приводящие к понятию определенного интеграла.Определенный интеграл. Теорема о существовании определенного интеграла.
11. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл. Теорема о существовании определенного интеграла. .
Пусть на отрезке [a,b] (b>a) задана непрерывная функция y = f(x) , принимающая на этом отрезке неотрицательные значения : при . Требуется определить площадь S криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x).
Для решения этой задачи разделим произвольным образом основание AD фигуры точками x0 = a, x1 , x2 , …, xn-1 = a, xn = b на n частей [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 ,xn]; символом будем обозначать длину i-го отрезка: . На каждом из отрезков [xi-1 , xi] выберем произвольную точку , найдём , вычислим произведение (это произведение равно площади прямоугольника Pi с основанием [xi-1 , xi] и высотой ) и просуммируем эти произведения по всем прямоугольникам. Полученную сумму обозначим S ступ: .
Sступ равно площади ступенчатой фигуры, образованной прямоугольниками Pi , i = 1,2,…,n; на левом рисунке эта площадь заштрихована. Sступ не равна искомой площади S, она только даёт некоторое приближение к S. Для того, чтобы улучшить это приближение, будем увеличивать количество n отрезков таким образом, чтобы максимальная длина этих отрезков стремилась к нулю (на рисунке ступенчатые фигуры изображены при n = 7 (слева) и при n = 14 (справа)). При разница между Sступ иS будет тоже стремиться к нулю, т.е.
.
11.1.2. Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1 ,x2], …, [xi-1 , xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков[xi-1 , xi] выберем произвольную точку и составим сумму .
Сумма называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка [a,b] на части [xi-1 , xi], ни от выбора точек , то функция f(x) называется интегрируемой по отрезку [a,b], а этот предел называется определённым интегралом от функцииf(x) по отрезку [a,b] и обозначается .
Функция f(x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования.
Кратко определение иногда записывают так: .
В этом определении предполагается, что b> a. Для других случаев примем, тоже по определению:
Если b=a, то ; если b<a, то .
11.1.3. Теорема существования определённого интеграла. Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема по этому отрезку.
Примем это утверждение без доказательства, поясним только его смысл. Интегрируемость функции означает существование конечного предела последовательности интегральных сумм, т.е. такого числа , что для любого найдётся такое число , что как только разбиение отрезка удовлетворяет неравенству , то, независимо от выбора точек выполняется неравенство. Требование непрерывности f(x) достаточно для интегрируемости, но не является необходимым. Интегрируемы функции, имеющие конечное или даже счётное число точек разрыва на [a,b] при условии их ограниченности (т.е. все точки разрыва должны быть точками разрыва первого рода). Неограниченная функция не может быть интегрируемой (идея доказательства этого утверждения: если f(x) неограничена на [a,b], то она неограничена на каком-либо[xi-1 , xi], т.е. на этом отрезке можно найти такую точку , что слагаемое , а следовательно, и вся интегральная сумма, будет больше любого наперед заданного числа).
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.